Comprehensive improvement of artificial fish swarm algorithm for global MPPT in PV system under partial shading conditions

Author:

Mao Mingxuan12,Duan Qichang1,Duan Pan3,Hu Bei1

Affiliation:

1. Automation College, Chongqing University, Chongqing, China

2. School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK

3. State Grid Chongqing Electric Power Company Nan’an Power Supply Subsidiary Company, Chongqing, China

Abstract

Due to the non-linear characteristics I–V of the photovoltaic (PV) curve, the tracking of the maximum power point (MPP) under partial shading (PS) conditions can sometimes be a challenging task. This paper presents a modified artificial fish swarm algorithm (AFSA) for MPP tracking (MPPT) in PV modules under PS. In this algorithm, the AFSA optimized by particle swarm optimization (PSO) algorithm with extended memory (PSOEM-FSA) is improved by hybridizing it with adaptive visual and step, and the resulting algorithm is a comprehensive improvement on the AFSA (abbreviated as CIAFSA). Combining the searching capabilities of the PSOEM-FSA and the self-learning ability of adaptive visual and step for AFSA, CIAFSA is developed. To validate the effectiveness of this novel MPPT technique, the PV system along with the proposed MPPT algorithm is simulated using the Matlab/Simulink Simscape toolbox. Results show that the proposed approach is more effective in MPPT in PV systems under PS conditions when compared with other methods in searching precision.

Funder

Graduate Scientific Research and Innovation Foundation of Chongqing

China Scholarship Council

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3