Modelling and adaptive dynamic sliding mode control of dielectrophoresis-based micromanipulation

Author:

Luo Hua1,Sun Weijie1,Yeow John TW2

Affiliation:

1. School of Automation Science and Engineering, South China University of Technology, China

2. Advanced Micro/Nano Devices Laboratory, University of Waterloo, Canada

Abstract

Automated, precise single particle manipulation in the microscale is in great demand and is one of the great challenges in biomedical and biochemical engineering. Automatic micromanipulation has also become a microrobotics challenge. Following this challenge, control technology is integrated with dielectrophoresis (DEP)-based micromanipulation technology in this paper to construct automatic DEP-based micromanipulation systems. DEP micromanipulation systems with electrodes of quadrupole polynomial geometry are developed as controllable microactuators. A semianalytical modelling method is proposed to formulate the analytical models of the DEP manipulation systems, which manifests that the DEP manipulation systems are non-affine non-linear systems. Then, taking the parameter uncertainties, unmodelled dynamics and external disturbances into account, an adaptive law combined with a dynamic sliding mode controller is designed for two-dimensional trajectory tracking control of a DEP micromanipulation system. The closed-loop system is proved stable in the presence of bounded lumped uncertainty based on the Lyapunov theorem. Finally, simulation results show the validity of the proposed control design.

Funder

Natural Science Foundation of Guangdong Province

Natural Science and Engineering Research Council of Canada

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3