Finite time control strategy for satellite attitude maneuver based on hybrid actuator

Author:

Ye Dong1,Zhang Xiao12,Wan Xucheng1,Sun Zhaowei1

Affiliation:

1. Research Center of Satellite Technology, Harbin Institute of Technology, China

2. Shanghai Institute of Satellite Engineering, China

Abstract

In this paper, a Nonsingular Terminal Sliding Mode Control (NTSMC) strategy is investigated to address the finite-time attitude tracking problem of a rigid spacecraft. Hybrid thruster and flywheel actuator system is used for rapid reorientation under external disturbance. The reference torque is obtained from time-optimal attitude trajectory, and it is exerted on the satellite by thrusters in the form of feedforward compensation. Owing to thruster output torque deviation, initial measurement error and external disturbances, the practical trajectory of a satellite would deviate from reference trajectory. In order for the satellite to track the reference trajectory in finite time, the correction torque is deduced based on the error between reference trajectory and real-time measurements, and then applied through flywheels in the form of feedback compensation. The NTSMC method is used to solve nonsingular problem and to improve the control precision of the satellite attitude tracking issue. The numerical simulation results show that this control strategy is effective and it has great robustness.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An output feedback back-stepping attitude control for rigid satellite;Transactions of the Institute of Measurement and Control;2023-02-01

2. Prescribed-time attitude control during solid thrusting orbital maneuver;2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA);2022-12-16

3. A prescribed time attitude control method based on thrust vector control (TVC) nozzle for solid propulsion satellite;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-11-25

4. Design of Active PWM Control Driver Circuit for Torquer System Using CCII;IEEE Access;2021

5. Robust finite-time adaptive control algorithm for satellite fast attitude maneuver;Journal of the Franklin Institute;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3