Contribution of the generalized nonunique inverses to the minimum-energy control theory: The inverse model control investigation

Author:

Feliks Tomasz1ORCID,Hunek Wojciech P1ORCID,Krok Marek1ORCID

Affiliation:

1. Department of Control Science and Engineering, Opole University of Technology, Poland

Abstract

The innovative analytical approach to the minimum-energy design problem of the inverse model control (IMC) state-space structures is presented in this work. Following the recent papers, it should be concluded that the optimal behavior of the IMC strategy cannot longer be associated with the application of the well-known Moore–Penrose minimum-norm inverse. However, the minimum-energy IMC-oriented scheme has only be obtained through heuristic methods. Nevertheless, in the recent authors’ work, it has been proven for the first time that such an issue can be considered in an analytical manner. Yet, the obtained results have only been valid for the second-order state-space systems. Therefore, the motivation instance proposed in the manuscript, confirming the possibility of extending such paradigm to higher-order plants, will certainly contribute to the introduction of the new unified minimum-energy IMC theory canon. Since the nonunique σ and H inverses can successfully be employed in the robustification of the discussed control strategy, they can also be helpful in the case of our essential considerations. Thus, from now on the yet unexplored research area can now be investigated in the analytical manner, what has never been seen before in the modern IMC-originated control theory and practice. The predefined methodology clearly fills the gap in the analytical control design procedures and opens a new chapter in the knowledge related to the well-known and broadly accepted multivariable control canons.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Physical Realization of the Minimum Variance Control-Like Algorithm Based on the Real-Life Servomechanism System: a Pilot Case Study;2023 27th International Conference on Methods and Models in Automation and Robotics (MMAR);2023-08-22

2. Complete analytical solution to the energy-optimal problem of multivariable perfect control systems based on the generalized H-inverse;2022 8th International Conference on Control, Decision and Information Technologies (CoDIT);2022-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3