Analysis of fractional-order dynamics of dengue infection with non-linear incidence functions

Author:

Jan Rashid1ORCID,Boulaaras Salah2

Affiliation:

1. School of Mathematics and Statistics, Xi’an Jiaotong University, P.R. China

2. Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Saudi Arabia

Abstract

The infection of dengue is a devastating mosquito-borne infection around the globe that affects human health, social and economic sectors in low-income areas. Therefore, policymakers and health experts are trying to point out better policies to reduce these losses and provide better information for the development of vaccination and medication. Here, we formulated a compartmental model for the transmission phenomena of dengue fever with nonlinear forces of infection through fractional derivative. We established several results related to the solution of our dengue model by using the basic properties of fractional calculus. We determined the basic reproduction number of our fractional-order system, symbolized by [Formula: see text]. We established the local asymptotic stability of the infection-free equilibrium of our dengue system for [Formula: see text], and proved that the infection-free equilibrium is globally asymptotically stable without vaccination. The threshold dynamics [Formula: see text] is tested through partial rank correlation coefficient method to notice the importance of parameters in the transmission of dengue infection. In addition, we have shown the impact of memory on the basic reproduction number numerically with the variation of different parameters. We conclude that the biting rate, recruitment rate of mosquitoes and index of memory are the most sensitive factors, which can effectively lower the level of dengue fever. The dynamical behavior of the proposed fractional system is presented through a numerical scheme to explore the overall transmission process. We predict that the fractional-order model can explore more accurately and preciously the intricate dengue disease transmission model rather than the integer-order derivative.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3