Affiliation:
1. Mathematics Department, College of Science, Jouf University, Saudi Arabia
2. ISSAT-Mateur, Université de Carthage, Tunisia
Abstract
In this paper, we are interested in the stabilization of the flow modeled by the Saint-Venant equations. We have solved two problems in this study. The first, we have proved that the operator associated to the Saint-Venant system has a finite number of unstable eigenvalues. Consequently, the system is not exponentially stable on the space [Formula: see text], but is exponentially stable on a subspace of the space [Formula: see text], ([Formula: see text] is a given domain). The second problem, if the advection is dominant, the natural stabilization is very slow. To solve these problems, we have used an extension method due to Russel (1974) and Fursikov (2002). Thanks to this method, we have determined a boundary Dirichlet control able to accelerate the stabilization of the flow. Also, the boundary Dirichlet control is able to kill all the unstable eigenvalues to get an exponentially stable solution on the space [Formula: see text]. Then, we extend this method to the finite difference equations analog of the continuous Saint-Venant equations. Also, in this case, we obtained similar results of stabilization. A finite difference scheme is used to compute the control and several numerical experiments are performed to illustrate the efficiency of the control.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献