Affiliation:
1. School of Electrical Engineering, Hebei University of Science and Technology, China
Abstract
Trajectory planning with the involvement of motion time has become a key and challenge for autonomous systems. This paper investigates trajectory planning of unmanned aerial vehicles (UAVs) under maneuverability and collision avoidance constraints. First, a polynomial-based trajectory planning framework is established, and a nonlinear programming problem (NLP) is formulated. Then, a novel asymptotic optimization approach is proposed to improve NLP solution success rate. Three operations of dividing the original NLP into sub-problems, adding constraints gradually, and using previous NLP solution as current initial guess value are designed in the approach. Third, an improved particle swarm optimization (PSO) path planning is also proposed to generate initial guess value for the first sub-problem. Benefited from these operations, the NLP solution success rate is significantly improved. Finally, simulations on simultaneous attack of a same target are carried out. Comparisons with other algorithms illustrate the advantage of the proposed approach.
Funder
Science and Technology Project of Hebei Education Department
Natural Science Foundation of Hebei Province
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献