A fast-moving horizon estimation method based on the symplectic pseudospectral algorithm

Author:

Wang Xinwei12ORCID,Liu Jie3,Peng Haijun1,Zhao Xudong2

Affiliation:

1. Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China

2. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, China

3. War Research Institute, Academy of Military Sciences, China

Abstract

In this paper, a fast-moving horizon state estimation algorithm for nonlinear continuous systems with measurement noises and model disturbances is developed. The optimization problem required to be solved at each sampling instant is formulated into a backward nonlinear optimal control problem over the finite past. Once prior knowledge of the observed system is available, constraints can be further imposed. The highly efficient and accurate symplectic pseudospectral algorithm is taken as the core solver, which leads to the symplectic pseudospectral moving horizon estimation (SP-MHE) method. The developed SP-MHE is first evaluated by numerical simulations for a hovercraft. Then the developed method is extended to parameter estimation and applied to a chaotic system with an unknown parameter. Simulation results show that the SP-MHE can generate accurate estimations even under large sampling periods or large noise where regular filters fail. In addition, the SP-MHE exhibits excellent online efficiency, suggesting it can be used for scenarios where the sampling period is relatively small.

Funder

national key research and development program of china

China Postdoctoral Science Foundation

National Natural Science Foundation of China

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3