Dynamic event-triggered control of large-scale nonlinear systems with sensor uncertainty

Author:

Feng Minghui1,Zhang Xianfu1ORCID,Duan Zhiyu1ORCID,Qi Yanan1

Affiliation:

1. School of Control Science and Engineering, Shandong University, P.R. China

Abstract

In this article, the dynamic event-triggered control problem is investigated for a class of large-scale nonlinear systems subject to sensor uncertainty. The unknown nonlinearities involved in each subsystem are assumed to be bounded by time-varying continuous functions multiplied by unknown constants and unmeasured states. To estimate the unmeasured states of each subsystem, a time-varying high-gain observer is constructed. Then, a dynamic event-triggered mechanism is proposed by introducing an internal dynamic variable in triggering function. Combined with the dual-domination approach, a dynamic event-triggered output feedback controller is developed for each subsystem. Subsequently, it is proved the convergence of all states is ensured based on the Lyapunov theory and the Zeno behavior can be avoided. Eventually, an example is presented to demonstrate the effectiveness of the proposed dynamic event-triggered control scheme.

Funder

National Natural Science Foundation of China

Foundation for Innovative Research Groups of National Natural Science Foundation of China

Taishan Scholar Project of Shandong Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3