Improved model-free fractional-order intelligent proportional–integral fractional-order sliding mode control with anti-windup compensator

Author:

Ardjal Aghiles1ORCID,Bettayeb Maamar23,Mansouri Rachid1

Affiliation:

1. L2CSP Laboratory, Mouloud Mammeri University, Algeria

2. Department of Electrical Engineering, University of Sharjah, United Arab Emirates

3. Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Saudi Arabia

Abstract

In addition to the difficulty of system modeling, every physical system faces actuator saturation, making the real control different from the controller output (desired control input). When this occurs, the controller output does not regulate the system properly and errors occur as a result of incorrect updating. This is known as the windup phenomenon. In the event that the controller is configured to override actuator saturation, it can lead to a failure in the controller’s performance, such as large overshoots, high response time, and even system instability in the worst case. Therefore, in this paper, a new robust model-free controller method is proposed. It is a combination of four nonlinear control techniques, namely model-free controller, fractional-order sliding mode controller, fractional integral–proportional (PI) controller, and anti-windup compensator, which gives rise to the new model-free controller algorithm called hybrid fractional-order intelligent PI fractional sliding mode controller with an anti-windup compensator termed (MF-FOiPI-FOSMC-AW). However, to illustrate the effectiveness of the new proposed MF-FOiPI-FOSMC-AW method, simulation and experimental results compared to classical PI and iPI controllers (with and without an anti-windup compensator) on a hydraulic system are presented in the presence or absence of external disturbances for different types of references. Finally, simulation is conducted through an experimental comparison of the proposed approach with other strategies such as the classical anti-windup PI controller and the anti-windup intelligent PI controller, which is carried out for this purpose.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive data-driven controller based on fractional calculus for solid oxide fuel cell;International Journal of Dynamics and Control;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3