Multi-sliding surface control for the speed regulation system of ship diesel engines

Author:

Yuan Yupeng123,Zhang Meng3,Chen Yongzhi3,Mao Xiaobing3

Affiliation:

1. Reliability Engineering Institute, School of Energy and Power Engineering, Wuhan University of Technology, China

2. Key Laboratory of Marine Power Engineering & Technology (Ministry of Communications), Wuhan University of Technology, China

3. School of Energy and Power Engineering, Wuhan University of Technology, China

Abstract

The steady and reliable operation of a ship’s diesel engine is important to the ship’s electrical power system and the engine’s performance, and stable control of rotational speed is crucial to a diesel engine’s emission, economy and power performance. A ship’s diesel engine is a nonlinear and time-varying system. A traditional proportional–integral–derivative (PID) controller cannot regulate the speed under different working conditions. In this paper, a nonlinear mathematical model for speed regulation of diesel engines is established according to experiments and a multi-sliding surface variable structure controller for speed regulation of diesel engine is established by sliding mode control. A bulk cargo ship 500-I was analysed as an example. The MATLAB/Simulink simulation took the navigation environment and the effect of the ship propeller on the diesel engine into consideration. A simulation model considering the whole ship–engine–propeller system is built and some conclusions can be drawn from the simulation. The multi-sliding surface control can restrain the overshoot and realize a quick track of the targeted value with high accuracy and strong robustness. In addition, the fuel consumption and CO2 emission of this sliding mode variable structure control is reduced by 4.6% compared with traditional PID control.

Funder

National Key Technology Support Program

Innovation Groups Project of Hubei Province Natural Science Foundation

Publisher

SAGE Publications

Subject

Instrumentation

Reference30 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3