Constant flow rate micropumping using closed-loop control of magnetically actuated nanofluid

Author:

Doğanay Serkan12ORCID,Çetin Levent2,Ezan Mehmet Akif3,Turgut Alpaslan3

Affiliation:

1. The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Turkey

2. Department of Mechatronics Engineering, İzmir Kâtip Çelebi University, Turkey

3. Department of Mechanical Engineering, Dokuz Eylül University, Turkey

Abstract

In this study, a magnetic actuator is controlled to obtain a constant flow rate micropumping by a magnetic nanofluid flow inside a semicircular-shaped microchannel with a constant square cross-section. A closed-loop control strategy is developed to achieve adequate control by utilizing a model based on experimental data. A novel digital image processing–based real-time velocity estimation algorithm is proposed as feedback information in the closed-loop control system. This paper aims to evaluate the success of the proposed real-time velocity estimation algorithm. The results indicate that the proposed algorithm can supply the fluid velocity inside the microchannel with a maximum deviation of less than 4% in the current micropumping system. Three different controllers—that is, proportional (P), proportional–integral (PI), and proportional–integral–derivative (PID)—are also implemented to test the influence of the control logic used in the closed-loop control strategy. Compared with the previous study, the implementation of a closed-loop control strategy in the present work provided a constant flow rate pumping. The findings reveal that the PID controller can maintain a constant flow rate with transient time values around 186, 94, and 60 seconds for reference values of 100, 200, and 300 µm/s, respectively. In addition, the PID controller could supply a constant flow rate within the microchannel 51% longer than the PI controller.

Funder

Dokuz Eylül Üniversitesi

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3