Robust and compliance control for robotic knee prosthesis using admittance model and sliding-mode controller

Author:

Huang Yongshan1ORCID,Ma Hongxu1,He Quan2,Lang Lin3,An Honglei1

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, China

2. Xiangya Hospital of Central South University, China

3. Hunan University of Finance and Economics, China

Abstract

Achieving compliance and flexibility under the premise of ensuring trajectory tracking performance and also reflecting the wearer’s movement intention, has not yet been well solved in the field of prosthesis. The aim of this paper is to provide a compliant, robust, and continuous control scheme for robotic knee prosthesis to solve the contradictory problems of trajectory tracking performance and compliance. The proposed scheme are based on the admittance model and radial basis function (RBF) neural network–enhanced nonsingular fast terminal sliding-mode controller (NFTSMC). The desired trajectory of the prosthetic knee joint is driven by humans and reshaped to reference trajectory by an admittance model, so that the prosthetic leg can reflect the human’s movement intention and being compliant. RBF neural network is introduced to achieve adaptive approximation of unknown models and ensure that the controller does not depend on the mathematical model of the “human-in-the-loop” prosthesis system. A novel NFTSMC was proposed to deal with the influence of ground reaction forces (GRFs) and fitting errors of the RBF neural network, which make the tracking error converge to zero in a finite time. The adaptive law of the RBF neural network is obtained by the Lyapunov method, and the stability and finite-time convergence of the closed-loop system are rigorously proved and analyzed mathematically. The simulation results prove the feasibility and effectiveness of the propose control scheme.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Parameter Identification for Human-robot Coupled Systems in Powered Lower Limb Prostheses.;2023 WRC Symposium on Advanced Robotics and Automation (WRC SARA);2023-08-19

2. Extended state observer–based improved non-singular fast terminal sliding mode for mobile manipulators;Transactions of the Institute of Measurement and Control;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3