Feedback error learning neural network for stable control of nonlinear nonaffine systems

Author:

Asgari Masoud1ORCID,Asgari Mersad2ORCID

Affiliation:

1. Electrical Engineering Department, Shahed University, Iran

2. Faculty of Electrical Engineering, K. N. Toosi University of Technology, Iran

Abstract

This study presents a stable feedback error learning (FEL) scheme for nonlinear nonaffine systems in the presence of uncertainty and disturbances. The distinguishing feature of the FEL method, which can have a significant effect on both transient and steady-state performance, has led us to adopt this approach. The nonlinear system studied here is nonaffine. In other words, the function that describes the dynamic equations of the system is an implicit function of the control input rather than a particular class of systems. We aim to develop a stable FEL control system with three components: a neural network (NN), a linear controller, and a robustifying control term. To this end, all the adaptation laws for the NN weights are derived from a Lyapunov function, ensuring that the closed-loop system is uniformly asymptotically stable (UAS). Thus, an NN learning control approach that effectively improves the transient performance, as well as the steady-state performance, is proposed, and its remarkable effectiveness is illustrated in comparison with the existing methods.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3