Iterative learning radial basis function neural networks control for unknown multi input multi output nonlinear systems with unknown control direction

Author:

Bensidhoum Tarek1,Bouakrif Farah1ORCID,Zasadzinski Michel2

Affiliation:

1. Laboratoire d’Automatique de Jijel, Université de Jijel, Algeria

2. Centre de Recherche en Automatique de Nancy (CRAN-UMR 7039), CNRS, Université de Lorraine, France

Abstract

In this paper, an iterative learning radial basis function neural-networks (RBF NN) control algorithm is developed for a class of unknown multi input multi output (MIMO) nonlinear systems with unknown control directions. The proposed control scheme is very simple in the sense that we use just a P-type iterative learning control (ILC) updating law in which an RBF neural network term is added to approximate the unknown nonlinear function, and an adaptive law for the weights of RBF neural network is proposed. We chose the RBF NN because it has universal approximation capabilities and can approximate any continuous function. In addition, among the advantages of our controller scheme is the fact that it is applicable to deal with a class of nonlinear systems without the need to satisfy the global Lipschitz continuity condition and we assume, only, that the unstructured uncertainty is norm-bounded by an unknown function. Another advantage of the proposed controller and unlike other works on ILC, we do not need any prior knowledge of the control directions for MIMO nonlinear system. Thus, the Nussbaum-type function is used to solve the problem of unknown control directions. In order to prove the asymptotic stability of the closed-loop system, a Lyapunov-like positive definite sequence is used, which is shown to be monotonically decreasing under the control design scheme. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed control scheme.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3