A modified multi swarm particle swarm optimization algorithm using an adaptive factor selection strategy

Author:

Chrouta Jaouher1ORCID,Farhani Fethi1,Zaafouri Abderrahmen1

Affiliation:

1. Research Laboratory LISIER, National High School of Engineers of Tunis ENSIT, University of Tunis, Tunisia

Abstract

In the present study, we suggest a modified version of heterogeneous multi-swarm particle swarm optimization (MSPSO) algorithm, that allows the amelioration of its performance by introducing an adaptive inertia weight approach. In order to bring about a balance between the exploration and exploitation characteristics of MSPSO allowing to promote information exchange amongst the subswarms. However, the classical MSPSO algorithm search behavior has not always been optimal in finding the optimal solution to certain problems, which results in falling into local optimum leading to premature convergence. The most advantages of the MSPSO there are easy to implement and there are few parameters to adjust. The inertia weight (w) is one of the most Particle Swarm Optimization’s (PSO) parameters. Controlling this parameter could facilitate the convergence and prevent an explosion of the swarm. To overcome the above limitations, this paper proposes a heterogeneous multi swarm PSO algorithm based on PSO number selection approach centred on the idea of particle swarm referred to as Multi-Swarm Particle Swarm Optimization algorithm with Factor selection strategy (FMSPSO). In the various process implementations of the particle swarm search, different parameter selection strategies are adopted to ameliorate the global search ability. The proposed FMSPSO is able to improve the population’s diversity and better explore the entire feature space. The statistical test and indicators that are reported in the specialized literature demonstrate that the suggested approach is superior in terms of efficiency to nine other popular PSO algorithms in solving the optimization problem of complex problems. The approach suggests that FMSPSO reaches a very promising performance for solving different types of optimization problems, leading eventually to higher solution accuracy.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3