Automatic tuning of robust model predictive control in iterative tasks using efficient Bayesian optimization

Author:

Tong Junbo1ORCID,Du Shuhan1,Fan Wenhui1,Chai Yueting1

Affiliation:

1. Department of Automation, Tsinghua University, China

Abstract

Robust model predictive control (RMPC) is an effective technology for controlling uncertain systems while robustly handling constraints, and its closed-loop performance heavily relies on the selection of objective functions. However, the objective functions are typically chosen to be close to the real control objectives, despite an objective function that leads to less conservative constraints often provides better closed-loop performance. In this paper, we propose an automatic tuning framework for RMPC in iterative tasks. In particular, we parameterize RMPC and develop a Bayesian optimization (BO) method to tune it by solving a black-box optimization problem. We then introduce an efficient transfer learning framework within BO, which speeds up the searching process and enhances the controller performance. The effectiveness of the proposed tuning framework is illustrated on numerical examples.

Publisher

SAGE Publications

Subject

Instrumentation

Reference38 articles.

1. Brochu E, Cora VM, de Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. CoRR. Available at: http://arxiv.org/abs/1012.2599

2. Bujarbaruah M, Zhang X, Tseng HE, et al. (2018) Adaptive MPC for autonomous lane keeping. Available at: https://arxiv.org/abs/1806.04335

3. Systems with persistent disturbances: predictive control with restricted constraints

4. Chua K, Calandra R, McAllister R, et al. (2018) Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In: Bengio S, Wallach H, Larochelle H, et al. (eds) Advances in Neural Information Processing Systems (Vol. 31). New York: Curran Associates. Available at: https://proceedings.neurips.cc/paper_files/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf (accessed 4 August 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3