Affiliation:
1. School of Control Science and Engineering, Dalian University of Technology, China
2. College of Electrical and Information Engineering, Dalian Jiaotong University, China
Abstract
A novel soft-sensing method for quality parameters of aviation kerosene in atmospheric distillation column based on least absolute shrinkage and selection operator and particle swarm optimization deep belief network (LASSO-PSO-DBN) is proposed. First, to reduce the dimension of the input variables, the least absolute shrinkage and selection operator (LASSO) algorithm is used to select the input variables that are irrelevant to the soft sensor of aviation kerosene quality parameters. Then, to improve the generalization of soft sensor model, a deep learning algorithm, deep belief network (DBN), is proposed for soft sensing of aviation kerosene quality parameters. Considering that the structure characteristics and parameters of DBN algorithm have a great impact on the learning and prediction results, the parameters of DBN are optimized based on particle swarm optimization (PSO) algorithm. The benchmark data sets and the industrial atmospheric distillation column data are used for simulation analysis and evaluation of the soft-sensing performance. The simulation results show that the novel proposed algorithm can effectively reduce the dimension of the input variables and simplify the structure of the soft sensor model. It also has good generalization ability and the predicted value is in good agreement with the actual measured value.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献