Fractional order active disturbance rejection control design for non-integer order plus time delay models

Author:

Yi Hang1ORCID,Wang Pei-hong1,Zhao Gang1

Affiliation:

1. School of Energy and Environment, Southeast University, China

Abstract

This paper proposes a time-delayed fractional order active disturbance rejection control (TD-FADRC) strategy to address a class of time-delayed fractional order systems represented by non-integer order plus time delay (NIOPTD) models. To accurately estimate the fractional order states, the fractional order extended state observer (FESO) is utilized with introducing an artificial delay block to synchronize inputs. The studied model and its corresponding observer are treated as a holistic plant, based on which several types of fractional order proportional-integral-derivative (FPID) with constrained order are employed as feedback controllers. By unfolding the resulting open-loop plant in the frequency domain, the controller gains can be derived explicitly from the typical robustness metrics, that is, the phase margin and gain crossover frequency. The performance, robustness, and delay issue are consequently all concerned. To guarantee the closed-loop stability, the controller gains under a given observer bandwidth are limited within a bounded region mapped by the D-decomposition method. Through representative simulations, the merits of the proposed strategy for such models are revealed.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3