Stacked sparse autoencoders that preserve the local and global feature structures for fault detection

Author:

Yin Jie1,Yan Xuefeng1ORCID

Affiliation:

1. Key Laboratory of Smart Manufacturing in Energy Chemical Process,Ministry of Education, East China University of Science and Technology, P. R. China

Abstract

Although the model based on an autoencoder (AE) exhibits strong feature extraction capability without data labeling, such model is less likely to consider the structural distribution of the original data and the extracted feature is uninterpretable. In this study, a new stacked sparse AE (SSAE) based on the preservation of local and global feature structures is proposed for fault detection. Two additional loss terms are included in the loss function of SSAE to retain the local and global structures of the original data. The preservation of the local feature considers the nearest neighbor of data in space, while that of the global feature considers the variance information of data. The final feature is not only a deep representation of data, but it also retains structural information as much as possible. The proposed model demonstrates remarkable detection performance in case studies of a numerical process and the Tennessee Eastman process.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3