Affiliation:
1. Key Laboratory of Smart Manufacturing in Energy Chemical Process,Ministry of Education, East China University of Science and Technology, P. R. China
Abstract
Although the model based on an autoencoder (AE) exhibits strong feature extraction capability without data labeling, such model is less likely to consider the structural distribution of the original data and the extracted feature is uninterpretable. In this study, a new stacked sparse AE (SSAE) based on the preservation of local and global feature structures is proposed for fault detection. Two additional loss terms are included in the loss function of SSAE to retain the local and global structures of the original data. The preservation of the local feature considers the nearest neighbor of data in space, while that of the global feature considers the variance information of data. The final feature is not only a deep representation of data, but it also retains structural information as much as possible. The proposed model demonstrates remarkable detection performance in case studies of a numerical process and the Tennessee Eastman process.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献