Enhanced AIMD-based decentralized residential charging of EVs

Author:

Liu Mingming1,McLoone Seán23

Affiliation:

1. Hamilton Institute, NUIM, Maynooth, Ireland

2. Department of Electronic Engineering, NUIM, Maynooth, Ireland

3. Energy, Power and Intelligent Control Research Cluster, Queen’s University of Belfast, Belfast, UK

Abstract

Moving from combustion engine to electric vehicle (EV)-based transport is recognized as having a major role to play in reducing pollution, combating climate change and improving energy security. However, the introduction of EVs poses major challenges for power system operation. With increasing penetration of EVs, uncontrolled coincident charging may overload the grid and substantially increase peak power requirements. Developing smart grid technologies and appropriate charging strategies to support the role out of EVs is therefore a high priority. In this paper, we investigate the effectiveness of distributed additive increase and multiplicative decrease (AIMD) charging algorithms, as proposed by Stüdli et al. in 2012, at mitigating the impact of domestic charging of EVs on low-voltage distribution networks. In particular, a number of enhancements to the basic AIMD implementation are introduced to enable local power system infrastructure and voltage level constraints to be taken into account and to reduce peak power requirements. The enhanced AIMD EV charging strategies are evaluated using power system simulations for a typical low-voltage residential feeder network in Ireland. Results show that by using the proposed AIMD-based smart charging algorithms, 50% EV penetration can be accommodated, compared with only 10% with uncontrolled charging, without exceeding network infrastructure constraints.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3