Signal processing algorithm for thermal drift compensation in high-temperature down-hole instrumentation systems

Author:

Mijarez Rito1,Pascacio David1,Guevara Ricardo1,Rodriguez Joaquin1

Affiliation:

1. Gerencia de Control, Electronica y Comunicaciones, Instituto de Investigaciones Eléctricas, 62490, Cuernavaca, Morelos, México

Abstract

Down-hole oil and gas industry requirements for measuring thermodynamic and geophysical parameters, for instance pressure, temperature, vibration and multiphase flow, are challenging. Accomplishing these necessities requires a complete signal communications chain of high-performance components and effective signal processing communication techniques to provide system reliability. Nevertheless, noise interference, cable attenuation and thermal drift of the front-end passive electronic elements can lead to poor signal-to-noise ratio (SNR) and possibly loss of the communication link. This paper describes a signal processing algorithm implemented in a bidirectional communication system that exchanges data from a down-hole high pressure and high-temperature (HPHT) measurement tool to the surface installation. The communication channel is a multi-conductor coaxial logging cable also used as a power supply transmission line. The instrumentation system consists of a proprietary down-hole measurement tool, composed of an HPHT sensor and a high-temperature digital signal processor (DSP)-based electronic device; located in the surface installation is a data-acquisition equipment. The system employs a signal processing algorithm, based on the frequency domain SNR characterization of the whole communication chain, which determines in real time the optimal carrier frequency that is automatically implemented in the selected modulation/demodulation technique. The obtained laboratory test results of the down-hole tool, using changes in temperature from 25° to 185°C, provide a firm basis for testing and evaluating the system in the field.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3