Low-dimensional model-based boundary control of 2D heat flow utilizing root locus

Author:

Efe Mehmet Önder1

Affiliation:

1. TOBB Economics and Technology University, Department of Electrical and Electronics Engineering, Sogutozu Cad No 43, Ankara, Turkey,

Abstract

Control of systems governed by Partial Differential Equations (PDEs) is an interesting subject area, as the classical tools of control theory are not directly applicable and PDEs can display enormously rich behaviour spatiotemporally. This paper considers the boundary control of a 2D heat flow problem. A solution to the control problem is obtained after a suitable model reduction. The considered PDE system is subject to Dirichlet boundary conditions of generic type f(x)γ(t). The separation of these boundary excitations after Proper Orthogonal Decomposition yields an autonomous Ordinary Differential Equation (ODE) set in which the boundary excitations are implicit. The main contribution of this paper is to describe a mathematical treatment based on the numerical observations such that the implicit excitation terms explicitly appear in the ODE set. With such an ODE model, standard tools of feedback control theory can be applied. A measurement point has been chosen, and the desired behaviour is forced to emerge at the chosen point. A root locus technique is used to obtain the controller. It is seen that the results obtained are in good compliance with the theoretical claims.

Publisher

SAGE Publications

Subject

Instrumentation

Reference15 articles.

1. Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations

2. Low dimensional modelling and Dirichlét boundary controller design for Burgers equation

3. Farlow, S. J. 1993: Partial differential equations for scientists and engineers. Dover Publications Inc. 317-322.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3