Finite-time output feedback trans-media tracking control of a slender body trans-media vehicle via neural network extended state observer

Author:

Wu Shichong1,Xie Lingli2ORCID,Xian Jun1234

Affiliation:

1. School of Systems Science and Engineering, Sun Yat-sen University, China

2. School of Mathematics, Sun Yat-sen University, China

3. School of Mathematics and Statistics, Minnan Normal University, China

4. Guangdong Provincial Key Laboratory of Computational Science, Sun Yat-sen University, China

Abstract

The emerging trans-media vehicle is significant due to its amphibious ability. A finite-time output feedback trans-media tracking control scheme is proposed for a slender body trans-media vehicle with unknown time-varying hydrodynamics and external disturbances. First, a novel neural network extended state observer is developed to observe the vehicle’s velocities and handle the time-varying hydrodynamics and total disturbances simultaneously. Then, combined with the proposed observer, the finite-time command filtered backstepping technique is carefully constructed to yield the finite-time output feedback tracking control. The strength of the proposed approach to the existing methods is that it ensures the trans-media tracking errors converge to the small region of origin within a finite time, even in the absence of velocity measurements. The simulations are given to illustrate the superiority of the proposed scheme.

Funder

the Guangdong Province Key Laboratory of Computational Science, China

Guangdong Provincial Government of China through the Computational Science Innovative Research Team program

Guangdong Basic and Applied Basic Research Foundation

Guangdong Province Nature Science Foundation

Minjiang Scholars of Fujian province, China

Guangzhou Science and Technology Foundation Committee

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3