Affiliation:
1. School of Information Science and Engineering, Northeastern University, China
2. School of Automation, Shenyang Aerospace University, China
Abstract
Support vector data description (SVDD) is a boundary-based one-class classifier that has been widely used for process monitoring during recent years. However, in some applications where databases are often contaminated by outliers, the performance of SVDD would become deteriorated, leading to low detection rate. To this end, this paper proposes a pruned SVDD model in order to improve its robustness. In contrast to other robust SVDD models that are developed from the algorithmic level, we prune the basic SVDD from a data level. The rationale is to exclude outlier examples from the final training set as many as possible. Specifically, three different SVDD models are constructed successively with different training sets. The first model is used to extract target points by means of rejecting more suspect outlier examples. The second model is constructed using those extracted target points, and is used to recover some false outlier examples labeled by the first model. We build the third (final) model with the final training set consisting of target examples by the first model and false outlier examples by the second model. We validate our proposed method on 20 benchmark data sets and TE data set. Comparative results show that our pruned model could improve the robustness of SVDD more efficiently.
Funder
National Natural Science Foundation of China
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献