A pruned support vector data description-based outlier detection method: Applied to robust process monitoring

Author:

Yuan Ping1,Mao Zhizhong1ORCID,Wang Biao2

Affiliation:

1. School of Information Science and Engineering, Northeastern University, China

2. School of Automation, Shenyang Aerospace University, China

Abstract

Support vector data description (SVDD) is a boundary-based one-class classifier that has been widely used for process monitoring during recent years. However, in some applications where databases are often contaminated by outliers, the performance of SVDD would become deteriorated, leading to low detection rate. To this end, this paper proposes a pruned SVDD model in order to improve its robustness. In contrast to other robust SVDD models that are developed from the algorithmic level, we prune the basic SVDD from a data level. The rationale is to exclude outlier examples from the final training set as many as possible. Specifically, three different SVDD models are constructed successively with different training sets. The first model is used to extract target points by means of rejecting more suspect outlier examples. The second model is constructed using those extracted target points, and is used to recover some false outlier examples labeled by the first model. We build the third (final) model with the final training set consisting of target examples by the first model and false outlier examples by the second model. We validate our proposed method on 20 benchmark data sets and TE data set. Comparative results show that our pruned model could improve the robustness of SVDD more efficiently.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3