Affiliation:
1. School of Automation, Northwestern Polytechnical University, P. R. China
2. Beijing Aerospace Automatic Control Institute, P. R. China
Abstract
The fault tolerant control (FTC) of hypersonic flight vehicle (HFV) with actuator fault is proposed in this paper. The fault model considered in this paper is a general model which HFV may encounter in practice. For designing the FTC, the nonlinear model of HFV is represented by T-S fuzzy models, and policy iteration (PI) strategy is utilized to solve the design problem of T-S controller for the built T-S model of HFV without actuator fault. Then, based on the normal T-S controller, an adaptive fuzzy FTC controller is proposed, in which the feedback gain matrices can improve themselves according to the special fault. The stability of the proposed adaptive fuzzy FTC is proved by Lyapunov theory, and an integral reinforcement learning (IRL)–based solving algorithm is proposed. Simulations on three different kinds of actuator faults are proposed, and the simulation results show that, under three different faults, the designed adaptive FTC can ensure the reliable flight of HFV.
Funder
National Natural Science Foundation of China