Integral reinforcement learning–based adaptive fuzzy fault tolerant control of hypersonic flight vehicle

Author:

Hu Xiaoxiang1ORCID,Li Ao1,Xiao Bing1,Lu Kunfeng2,Wang Zhaolei2ORCID

Affiliation:

1. School of Automation, Northwestern Polytechnical University, P. R. China

2. Beijing Aerospace Automatic Control Institute, P. R. China

Abstract

The fault tolerant control (FTC) of hypersonic flight vehicle (HFV) with actuator fault is proposed in this paper. The fault model considered in this paper is a general model which HFV may encounter in practice. For designing the FTC, the nonlinear model of HFV is represented by T-S fuzzy models, and policy iteration (PI) strategy is utilized to solve the design problem of T-S controller for the built T-S model of HFV without actuator fault. Then, based on the normal T-S controller, an adaptive fuzzy FTC controller is proposed, in which the feedback gain matrices can improve themselves according to the special fault. The stability of the proposed adaptive fuzzy FTC is proved by Lyapunov theory, and an integral reinforcement learning (IRL)–based solving algorithm is proposed. Simulations on three different kinds of actuator faults are proposed, and the simulation results show that, under three different faults, the designed adaptive FTC can ensure the reliable flight of HFV.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3