Reinforcement learning analysis for a minimum time balance problem

Author:

Tutsoy Onder1,Brown Martin2

Affiliation:

1. Electrical and Electronic Engineering Department, Adana Science and Technology University, Adana, Turkey

2. The School of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK

Abstract

Reinforcement learning was developed to solve complex learning control problems, where only a minimal amount of a priori knowledge exists about the system dynamics. It has also been used as a model of cognitive learning in humans and applied to systems, such as pole balancing and humanoid robots, to study embodied cognition. However, closed-form analysis of the value function learning based on a higher-order unstable test problem dynamics has been rarely considered. In this paper, firstly, a second-order, unstable balance test problem is used to investigate issues associated with the value function parameter convergence and rate of convergence. In particular, the convergence of the minimum time value function is analysed, where the minimum time optimal control policy is assumed known. It is shown that the temporal difference error introduces a null space associated with the experiment termination basis function during the simulation. As this effect occurs due to termination or any kind of switching in control signal, this null space appears in temporal differences (TD) error for more general higher-order systems. Secondly, the rate of parameter convergence is analysed and it is shown that residual gradient algorithm converges faster than TD(0) for this particular test problem. Thirdly, impact of the finite horizon on both the value function and control policy learning has been analysed in case of unknown control policy and added random exploration noise.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3