Affiliation:
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, China
Abstract
In this paper, an adaptive fault-tolerant attitude tracking controller based on reinforcement learning is developed for flying-wing unmanned aerial vehicle subjected to actuator faults and saturation. At first, the attitude dynamic model is separated into two dynamic subsystems as slow and fast dynamic subsystems based on the principle of time scale separation. Secondly, backstepping technique is adopted to design the controller. For the purpose of attitude angle constraints, the control technique based on Barrier Lyapunov is used to design controller of slow dynamic subsystem. Considering the optimization of the fast dynamic subsystem, this paper introduces an adaptive reinforcement learning control method in which neural network is used to approximate the long-term performance index and lumped fault dynamic. It is shown that this control algorithm can satisfy the requirements of attitude tracking subjected to the control constraints and the stability of the system is proved from Lyapunov stability theory. The simulation results demonstrate that the developed fault-tolerant scheme is useful and has more smooth control effect compared with fault-tolerant controller based on sliding mode theory.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献