An adaptive linear neural network with least mean M-estimate weight updating rule employed for harmonics identification and power quality monitoring

Author:

Garanayak Priyabat12,Panda Gayadhar2

Affiliation:

1. Department of Electrical Engineering, Indian Institute of Technology Delhi, India

2. Department of Electrical Engineering, National Institute of Technology Meghalaya, India

Abstract

This paper describes a combined adaptive linear neural network and least mean M-estimate (ADALINE-LMM) algorithm for estimating the amplitude and phase of the individual harmonic contained in a distorted power system current signal. The weight vector of the ADALINE is updated iteratively by LMM algorithm. A Hampel’s three parts redescending M-estimator function is incorporated in the instantaneous cost function to provide thresholds for identifying and eliminating the effect of temporary fluctuation owing to the presence of impulsive noise. This type of combined approach shows more accurate and faster tracking capability than the combined ADALINE and variable step size least mean square (ADALINE-VSLMS) algorithm. In addition to this, the proposed algorithm is suggested in shunt hybrid active power filter (SHAPF) for extracting the harmonics and reactive power components from the distorted load currents. Extensive time domain simulation is carried out to evaluate the performance of the SHAPF for maintaining the power quality of a system under various demanding situations. Moreover, an experimental setup is developed in the laboratory for verification of the proposed control technique in a real-time application using a Spartan 3A DSP processor.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3