Decentralized event-triggered sliding mode scheme for frequency regulation of multi-area power systems under deception attacks

Author:

Xu Kun1,Niu Yugang1ORCID

Affiliation:

1. East China University of Science and Technology, China

Abstract

This paper investigates the frequency regulation problem of networked multi-area power systems subject to random deception attacks. Due to the increasing integration of wireless communication devices in power systems, the frequency stability highly relies on the efficiency and security of information transmission. To alleviate the communication burden, a decentralized dynamic event-triggered (ET) scheme is proposed, in which each area transmits the measurement via its own ET rule. Moreover, the coefficients of dynamic variables are designed based on the state variations and the attack probability for different areas. Then, a decentralized ET sliding mode controller is proposed to restore the frequency. Both the mean square exponentially ultimate boundedness of the power systems and reachability of the specified sliding surface are analyzed, and the corresponding conditions are given. Compared with the widely adopted centralized schemes, the proposed decentralized ET control scheme is easier to implement and can ensure more reasonable transmission considering attack probability for different areas; meanwhile, the deception attacks on different areas are considered to occur independently. Finally, simulation results of a three-area power system are provided.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud-Based Frequency Control for Multiarea Power Systems: Privacy Preserving via Homomorphic Encryption;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-08

2. Control of Large-Scale Battery Storage Systems in Different Areas of Multi-area Power Systems;2023 6th Asia Conference on Energy and Electrical Engineering (ACEEE);2023-07-21

3. Decentralized attack detection for multi‐area power systems via interconnection‐decoupled sliding mode observer;International Journal of Robust and Nonlinear Control;2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3