Sliding-mode perturbation observer-based sliding-mode control design for stability enhancement of multi-machine power systems

Author:

Yang B1,Yu T2,Shu HC1,Yao W3,Jiang L4

Affiliation:

1. Faculty of Electric Power Engineering, Kunming University of Science and Technology, China

2. School of Electric Power Engineering, South China University of Technology, China

3. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, China

4. Department of Electrical Engineering and Electronics, University of Liverpool, UK

Abstract

This paper presents the design of a sliding-mode perturbation observer-based sliding-mode control for stability enhancement of multi-machine power systems. The combinatorial effect of nonlinearities, parameter uncertainties, unmodelled dynamics and time-varying external disturbances is aggregated into a perturbation, which is rapidly estimated by a sliding-mode state and perturbation observer and then fully compensated by a sliding-mode controller in real time. The attractiveness of the sliding surface is analysed theoretically in the context of the Lyapunov criterion. The proposed control does not require an accurate system model and only one state measurement is needed. In addition, an over-conservative control effort can be effectively avoided via perturbation compensation. Simulation results for a three-machine power system and the New England power system verify the effectiveness of the proposed approach.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Yunnan Provincial Department of Education

Yunnan Provincial Talents Training Program

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3