Model Predictive Control based on Long-Term Memory neural network model inversion

Author:

Dieulot Jean-Yves1ORCID

Affiliation:

1. Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL), UMR 9189, CNRS, Université de Lille and Centrale Lille, France

Abstract

Long Short-Term Memory (LSTM) neural networks are well suited for representing time series as, compared to other neural networks, their structure avoids vanishing or exploding gradients. LSTM has been embedded into Model Predictive Control algorithms in order to forecast the behavior of nonlinear systems. The new algorithm presented in the paper is of a different nature, as the LSTM network approximates the inverse of the system over a receding horizon and provides a sequence of future inputs as a function of a specified output trajectory. The main advantage of the method appears when the desired output trajectory is generated from a small set of parameters, for example, a convergence rate. The Model Predictive control optimizes its criterion with respect to this small set of variables, and the LSTM supplies the corresponding future control inputs. Eventually, the modeling error of the LSTM can be compensated by feeding the control sequence to the forward model and updating the controller according to the output deviation. The algorithm allows to design Model Predictive controllers for nonlinear systems in a generic way, using a very small number of decision variables even with a long receding horizon.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3