Risk assessment of COVID-19 based on a new structure of neural fuzzy probabilistic model

Author:

Sabahi Farnaz1ORCID

Affiliation:

1. Electrical Engineering Department, Engineering Faculty, Urmia University, Iran

Abstract

The risk assessment of the COVID-19 infection can save so many lives, reduce treatment costs, and increase public health. The unknown nature of the COVID-19 infection, the high impreciseness of available information, and not simply recognizing the relevant factors and their effectiveness may cause overestimating and underestimating of factors. This paper puts forward a development of a model with fewer limitations that are more consistent with progressive knowledge about COVID-19. Dealing with the situation of updating the statistical dataset daily, the proposed approach can effectively use the subjectivity inherent in the fuzzy probability interpretation of risk factors using expert knowledge in addition to the statistical dataset. Second, to this uncertainty handling improvement, a specificity-based parameter learning based on the learning network is also added to deal with the complexity aspect of the COVID-19 infection. The learning process helps the proposed structure better adjust the effectiveness of factors. From the achieved results, it is verified that people with advanced age, those with chronic obstructive pulmonary disease, lung cancer, and those having cancer treatments are at higher risk of death if they are infected by COVID-19. Undoubtedly, for vaccination, these three groups should be considered in order to prevent death situations.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3