Affiliation:
1. College of Mechanical & Electronic Engineering, Shandong University of Science & Technology, China
2. Business School, Qingdao University of Technology, China
Abstract
Theoretical modeling and vibration control for divergent motion of thin-walled pre-twisted wind turbine blade have been investigated based on “linear quadratic Gaussian (LQG) controller using loop transfer recovery (LTR) at plant input” (LLI). The blade section is a single-celled composite structure with symmetric layup configuration of circumferentially uniform stiffness (CUS), exhibiting displacements of vertical/lateral bending coupling. Flutter suppression for divergent instability is investigated, with blade driven by nonlinear aerodynamic forces. Theoretical modeling of CUS-based structure is implemented based on Hamilton variational principle of elasticity theory. The discretization of aeroelastic equations is solved by Galerkin method, with blade tip responses demonstrated. The LLI controller is characterized by LTR at the plant input. The effects of LLI controller are achieved and illustrated by displacement responses, controller responses and frequency spectrum analysis, respectively.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献