The control of the electro-hydraulic shaking table based on dynamic surface adaptive robust control

Author:

Shen Wei1,Wang Jun-zheng1,Wang Shou-kun1

Affiliation:

1. Key Laboratory of Intelligent Control and Decision for Complex System, Beijing Institute of Technology, Beijing, China

Abstract

The electro-hydraulic shaking table is investigated, in the present paper, to simulate the vibrational working environment of industrial components and equipment. Adaptive robust control can be applied to the shaking table system because electro-hydraulic systems suffer from internal parameter uncertainties and external disturbances. However, the adaptive robust controller design is complicated and has a large computational cost owing to the ‘explosion of terms’ problem. Thus dynamic surface control is applied in the design procedure of adaptive robust controllers to overcome the ‘explosion of terms’ problem. In this work, dynamic surface adaptive robust control is proposed. It simplifies the designed procedure of the controller and decreases its computational cost. Firstly, the structure of a shaking table is formulated and the operation principles of the shaking table, including the hydraulic and control principles, are analysed. A change is made in the mechanical-hydraulic system of the fluid circuit to address the problem of changing the vibration direction. Secondly, a dynamic model of a shaking table is proposed. Based on analysis of this model, the design of a dynamic surface adaptive robust controller for a shaking table is presented so as to improve its performance. Finally, comparative simulations and experiments are carried out. The comparison of performance results with proportional-integral-derivative control verify the correctness of the hydraulic scheme and control principle, as well as the high-performance of the dynamic surface adaptive robust controller. The shaking table achieves a guaranteed dynamical performance and tracking accuracy for the output in the presence of parameter and load uncertainties.

Funder

Beijing Natural Science Foundation

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3