Proportional integral observer-based decentralized stabilization design scheme for nonlinear complex interconnected systems

Author:

Tlili Ali Sghaier1

Affiliation:

1. Laboratory of Advanced Systems, Polytechnic School of Tunisia, Tunisia

Abstract

For a class of complex interconnected nonlinear disturbed systems, a proportional integral (PI) decentralized observer-based feedback robust decentralized controller technique is proposed, relying on H synthesis for disturbance mitigation and linear matrix inequality (LMI) tools to achieve asymptotic stabilization and stability analysis within the Lyapunov framework. The proposed design method draws on a prominent optimization problem that can be tackled in terms of LMI constraints to evaluate the decentralized controller and PI observer gain matrices jointly, to maximize the nonlinearity coverage tolerated by the system without destabilization and to improve the robustness of the proposed control strategy by minimizing an H criterion despite exogenous disturbances and strong nonlinear interconnections affecting the subsystems. The efficacy and high performance of the proposed control approach, compared with a renowned decentralized guaranteed cost control strategy from the literature, are validated by numerical simulations on a greatly interconnected three-machine power system.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3