Power short-term load forecasting based on fuzzy C-means clustering and improved locally weighted linear regression

Author:

Niu Shuqi1,Zhang Zhao1ORCID,Zhou Hongyan2,Chen Xue-Bo2

Affiliation:

1. School of Computer Science and Software Engineering, University of Science and Technology Liaoning, China

2. School of Electronic and Information Engineering, University of Science and Technology Liaoning, China

Abstract

Power load forecasting is an important part of modern smart grid operation management. Accurate forecasting guides the efficient and stable operation of the power system. In this paper, a fuzzy C-means clustering algorithm and an improved locally weighted linear regression model are proposed for short-term power load forecasting. First, the fuzzy C-means clustering algorithm is used to cluster the power load. Make the power consumption behavior of load data of the same category similar and use the power consumption load data of the same category as the training sample. Then, to solve the problem of large calculation and insufficient fitting of the locally weighted linear regression model, the k-nearest neighbor range constraint is introduced into the model for daily load forecasting. Finally, the effectiveness of the method is verified by a simulation example. Experimental results show that this method can effectively improve the accuracy and generalization ability of power load forecasting compared with other methods.

Funder

State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds

Excellent Talent Training Project of University of Science and Technology Liaoning

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3