Affiliation:
1. School of Mathematics, Liaoning University, China
2. College of Light Industry, Liaoning University, China
Abstract
This paper presents fractional-order Kalman filters using the fractional-order average derivative method for linear fractional-order systems involving process and measurement noises. By using the fractional-order average derivative method, a difference equation model is obtained by discretizing the investigated continuous-time fractional-order system, and the accuracy of state estimation is improved. Meanwhile, compared with the Tustin generating function, the fractional-order average derivative method proposed in this paper can reduce computation load and save calculation time. Two kinds of fractional-order Kalman filters are given, for the correlated and uncorrelated cases, in terms of the process and measurement noises for linear fractional-order systems, respectively. Finally, simulation results are illustrated to verify the effectiveness of the proposed Kalman filters using the fractional-order average derivative method.
Funder
National Natural Science Foundation of China
Scientific Research Fund of Liaoning Provincial Education Department China
Shenyang City Science and Technology Projects
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献