Gait-stride-and-frequency-based human intention recognition approach and experimental verification on lower limb exoskeleton

Author:

Zhu Shiqiang1,Zhou Shizhao1,Chen Zheng12ORCID,Song Wei1,Jin Lai3

Affiliation:

1. The Ocean College, Zhejiang University, China

2. Hainan Institute of Zhejiang University, China

3. Shanghai Shenqing Industry Co. Ltd., China

Abstract

In the research of lower extremity exoskeleton, how to achieve synchronization between human and machine is quite significant. The intention recognition, which can be divided into three categories including EMG-based, EEG-based and biomechanics-based, is one of the effective implementation methods. In this paper, a new biomechanics-based method to realize the intention recognition is proposed. Compared with the mainstream, this method identifies the characteristic value of stride and frequency during walking, which describes human intention mathematically and concretizes the intention of human movement, improving the accuracy of recognition result and streamlining the algorithm. In addition, the impedance model is designed to further correct the recognition error. The main contents of this paper can be roughly summarized as follows. Gait feature event points are detected according to the angular signals of exoskeleton joints and the pressure signals of foot sole during the wearer’s walking process. Then the whole gait cycle is segmented by the identified gait feature event points, which is used to identify the wearer’s gait step and frequency in the gait cycle and output the trajectory transformed from standard gait trajectory by the recognized stride and frequency. Moreover, the interactive force signal collected by the three-dimensional force sensors mounted on the four-legged bar is provided as input to the designed impedance controller to adjust the transformed trajectory again. Also, the final trajectory is input to the Proportion Integral and Differential (PID) controller to realize the motion function of the lower extremity exoskeleton based on the wearer’s intention recognition result. Moreover, a simple hardware platform of lower limb exoskeleton is designed and built for practical experimental verification, which involves three kinds of gait respectively having constant stride, constant frequency and time-varying stride and frequency. The feasibility and reliability of the proposed algorithm can be concluded by analyzing the satisfactory experiment result.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3