Improvement of a P-wave detector by a bivariate classification stage

Author:

Hernández A. I.1,Carrault G.2,Mora F.3

Affiliation:

1. Laboratoire Traitement du Signal et de l’Image, INSERM, Campus de Beaulieu, Université de Rennes I, 35042 Rennes Cedex, France, Grupo de Bioingeniería y Biofísica Aplicada, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela,

2. Laboratoire Traitement du Signal et de l’Image, INSERM, Campus de Beaulieu, Université de Rennes I, 35042 Rennes Cedex, France

3. Grupo de Bioingeniería y Biofísica Aplicada, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela

Abstract

For more than three decades, beat-to-beat detection of electrical atrial activity has been subject of interest in the biomedical field. Several detection schemes and algorithms have been proposed; however, this problem has not been satisfactory solved and remains the main error source for accurate automatic detection and classification of supraventricular arrhythmias, mainly in ambulatory applications and in coronary care units. Some detection methods have been proposed, but none of them have been quantitatively tested or compared, due in part to the lack of a database with annotated P-waves. In this work, a classification stage is proposed as a new decision strategy to improve a P-wave detector previously developed in our laboratory. A quantitative evaluation of the original detector, the proposed classification stage and two other classical P-wave detectors is performed by means of the calculation of their receiver operating characteristics (ROC) curves. Results show the increased performance provided by the new classification stage with respect to the originally developed algorithm and two classical P-wave detection methods.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3