Adaptive decentralized tracking control of a class of large-scale nonlinear systems with unknown dead-zone inputs using neural network

Author:

Han Yu-Qun12ORCID,Zhu Shan-Liang12,Duan De-Yu12,Chu Lei12,Yang Shu-Guo12

Affiliation:

1. School of Mathematics and Physics, Qingdao University of Science and Technology, China

2. Research Center for Date Science and Information Technology, Qingdao University of Science and Technology, China

Abstract

In this paper, an adaptive decentralized control approach is proposed for a class of large-scale nonlinear systems with unknown dead-zone inputs using neural network. Firstly, the dead-zone outputs are firstly represented as simple linear systems with a static time-varying gain and bounded disturbance by introducing characteristic function. Secondly, in the controller design, neural networks are utilized to approximate the unknown nonlinear functions. Thirdly, an adaptive decentralized tracking control approach is constructed via backstepping design technique. It is shown that the proposed control approach can assure that all the signals of the closed-loop system semi-globally uniformly ultimately bounded and the tracking errors finally converge to a small domain around the origin. The proposed method can get precise tracking results with low computational cost, and have a good real-time performance and convergence. Finally, two examples are given to demonstrate the effectiveness of the proposed control scheme.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3