An improved state space model predictive control for linear systems with input disturbance

Author:

Zhang Jian1ORCID,Xu Ying2,Li Yiran3

Affiliation:

1. Department of Automation, Tsinghua University, China

2. Optics and Electronics Technology Invention Examination Department, State Intellectual Property Office of P.R. China (SIPO), China

3. School of Automation, Beijing Institute of Technology, China

Abstract

This paper presents an improved model predictive control (MPC) algorithm for linear systems with input disturbance. Based on the developed extended non-minimum state space input disturbance (ENMSS-ID) model, the input disturbance model structure is incorporated into the MPC framework and the objective function of the MPC optimization problem is improved to weigh the system output increments. This enables the algorithm simultaneously to achieve good input disturbance rejection performance for systems with known input disturbances and reduce the controllers’ sensitivity to model mismatch. An existing optimal estimation method is introduced to estimate the input disturbance, together with the proposed strategy to improve estimation convergence. Offset-free property is also proven to show the steady-state performance of the designed control scheme. Finally, two benchmark plants are studied to illustrate the effectiveness and advantages of the proposed algorithm.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3