Multi-objective integrated scheduling optimization of semi-combined marine crankshaft structure production workshop for green manufacturing

Author:

Li Haochen1ORCID,Duan Jianguo2,Zhang Qinglei2

Affiliation:

1. Logistics Engineering College, Shanghai Maritime University, China

2. China Institute of FTZ Supply Chain, Shanghai Maritime University, China

Abstract

In order to realize green manufacturing in the production process of semi-combined marine crankshaft structural parts, good job scheduling and reasonable workshop layout are the key. In traditional method, flexible job shop scheduling problem (FJSP) and the multi-row workshop layout problem (MRWLP) are regarded as separate tasks. However, the separate optimization method ignores the interaction between FJSP and MRWLP. Because the process sequencing of FJSP affects the layout results of processing machines, while the layout scheme of MRWLP affects the scheduling completion time through the transportation between processes. Therefore, it is very important to establish an integrated mathematical model for optimization of both layout and scheduling simultaneously to explore the common influence of the two resource constraints on scheduling results. At the same time, the transportation task is also a manufacturing process that cannot be ignored, which affects the completion time and energy consumption of the workshop, especially the heavy industrial manufacturing workshop with crane as transportation equipment. According to the established model, a five-segment coding including transportation information, layout information and processing information is designed, and two heuristic selection strategies are integrated into non-dominated sorting genetic algorithm II (NSGA-II) to optimize the iterative results twice. Finally, the effectiveness of the integrated mathematical model is verified by an example, which provides guidance for green manufacturing in the shipbuilding industry.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3