A novel deep neural network method for electrical impedance tomography

Author:

Li Xiuyan12,Zhou Yong12,Wang Jianming12,Wang Qi12,Lu Yang12,Duan Xiaojie12,Sun Yukuan12,Zhang Jingwan12,Liu Zongyu12

Affiliation:

1. Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin Polytechnic University, China

2. School of Electronics and Information Engineering, Tianjin Polytechnic University, China

Abstract

Image reconstruction for Electrical Impedance Tomography (EIT) is a highly nonlinear and ill-posed inverse problem. It requires the design and employment of feasible reconstruction methods capable to guarantee trustworthy image generation. Deep Neural Networks (DNN) have a powerful ability to express complex nonlinear functions. This research paper introduces a novel framework based on DNN aiming to achieve EIT image reconstruction. The proposed DNN model, comprises of the following two layers, namely: The Stacked Autoencoder (SAE) and the Logistic Regression (LR). It is trained using the large lab samples which are obtained by the COMSOL simulation software (a cross platform finite elements analysis solver). The relationship between the voltage measurement and the internal conductivity distribution is determined. The untrained voltage measurement samples are used as input to the trained DNN, and the output is an estimate for image reconstruction of the internal conductivity distribution. The results show that the proposed model can achieve reliable shape and size reconstruction. When white Gaussian noise with a signal-to-noise ratio of 30, 40 and 50 were added to test set, the proposed DNN structure still has good imaging results, which proved the anti-noise capability of the network. Furthermore, the network that was trained using simulation data sets, would be applied for the EIT image reconstruction based on the experimental data that were produced after preprocessing.

Funder

Tianjin enterprise science and technology correspondent project

National Natural Science Foundation of China

natural science foundation of tianjin municipal science and technology commission

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3