Inter-turn fault stability enrichment and diagnostic analysis of power system network using wavelet transformation-based sample data control and fuzzy logic controller

Author:

Singh Arunesh Kumar1,Saxena Abhinav12ORCID,Roy Nathuni1,Choudhury Umakanta3

Affiliation:

1. Department of Electrical Engineering, Jamia Millia Islamia, India

2. JSS Academy of Technical Education Noida, India

3. HMR Institute of Technology, GGSIP University, India

Abstract

In this paper, performance analysis of power system network is carried out by injecting the inter-turn fault at the power transformer. The injection of inter-turn fault generates the inrush current in the network. The power system network consists of transformer, current transformer, potential transformer, circuit breaker, isolator, resistance, inductance, loads, and generating source. The fault detection and termination related to inrush current has some drawbacks and limitations such as slow convergence rate, less stability and more distortion with the existing methods. These drawbacks motivate the researchers to overcome the drawbacks with new proposed methods using wavelet transformation with sample data control and fuzzy logic controller. The wavelet transformation is used to diagnose the fault type but contribute lesser for fault termination; due to that, sample data of different signals are collected at different frequencies. Further, the analysis of collected sample data is assessed by using Z-transformation and fuzzy logic controller for fault termination. The stability, total harmonic distortion and convergence rate of collected sample data among all three methods (wavelet transformation, Z-transformation and fuzzy logic controller) are compared for fault termination by using linear regression analysis. The complete performance of fault diagnosis along with fault termination has been analyzed on Simulink. It is observed that after fault injection at power transformer, fault recovers faster under fuzzy logic controller in comparison with Z-transformation followed by wavelet transformation due to higher stability, less total harmonic distortion and faster convergence.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3