Recursive d-step-ahead predictive control of MIMO nonlinear systems with input time-delay via multi-dimensional Taylor network extended from PID

Author:

Li Chen-Long123ORCID,Yan Hong-Sen12ORCID,Zhang Chao14

Affiliation:

1. Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University, P.R. China

2. School of Automation, Southeast University, P.R. China

3. Hangzhou Innovation Institute, Beihang University, P.R. China

4. School of Electrical Engineering and Automation, Henan Institute of Science and Technology, P.R. China

Abstract

In this paper, a recursive d-step-ahead predictive control scheme based on multi-dimensional Taylor network (MTN) is proposed for the real-time tracking control of multiple-input multiple-output (MIMO) nonlinear systems with input time-delay. The MTN predictive model is designed using a recursive approach to compensate the influence of time-delay, and an extended Kalman filter (EKF) is applied as its learning algorithm. An MTN controller is developed based on a proportional–integral–derivative (PID) controller where the closed-loop errors between the reference input and the system output are set as the MTN controller’s inputs. Then, a back propagation (BP) algorithm, designed to update its weights according to errors caused by system uncertainty, is used as a learning algorithm for the MTN controller. Meanwhile, the convergence of the MTN predictive model and the stability of the closed-loop system are evaluated. Two numerical examples and a practical example – continuous stirred tank reactor (CSTR) process are presented to verify the superiority of the proposed scheme. The experimental results and the computational complexity analysis show that the proposed scheme is effective, promising its desirable robustness, anti-disturbance, tracking and real-time performance.

Funder

High-level Talent Research Foundation of Henan Institute of Technology

Shanghai Aerospace Science and Technology Innovation Foundation

Education and Teaching Reform Research and Practice Project of Henan Institute of Technology

Priority Academic Program Development of Jiangsu Higher Education Institutions

State Scholarship Fund

Special Research and Promotion Program of Henan Province

Postdoctoral Science Foundation of Zhejiang Province of China

Fundamental Research Funds for the Central Universities of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3