Adaptive neural network sliding mode control for reliable stabilization of uncertain Takagi–Sugeno fuzzy systems regulated by switching rules

Author:

Jiang Baoping1ORCID,Chen Shouzhuan1,Karimi Hamid Reza2,Li Bo3

Affiliation:

1. School of Electronic and Information Engineering, Suzhou University of Science and Technology, China

2. Department of Mechanical Engineering, Politecnico di Milano, Italy

3. Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Abstract

The problem of adaptive sliding mode control for a class of continuous-time Takagi–Sugeno fuzzy systems regulated by the event of switching rules relying on neural network estimation method is put forward in this paper, where the plant suffers from state delay, internal structure uncertainty, and unknown nonlinearity. By proposing a switching surface in integral type, it obtains a sliding motion with desired property. In addition, to compensate the plant unknown nonlinearity and to meet the reaching condition, a radial basis function neural-network-based adaptive law is designed to ensure the existence of sliding motion in finite time. Furthermore, for the purpose of exponential stabilization of the sliding motion, a linear matrix inequality condition accompanied with switching signal characterized by an average dwell time is put forward. Finally, two numerical examples, one with all subsystems unstable and the other with stable subsystems and unstable systems, are shown to confirm the validity.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3