Robot workstation failure recovery based on a layout optimization

Author:

Filipović Marko1,Bogdan Stjepan2,Petrović Tamara2

Affiliation:

1. Department of Control and Computer Engineering, Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

2. Laboratory for Robotics and Intelligent Control Systems, Department of Control and Computer Engineering, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

Abstract

This article focuses on the robot workstation layout problem and briefly discusses a recovery control strategy. Since present industrial workstations utilize a flexible manufacturing cell served by a robot, researchers in this field try to find the best method determining the physical organization of resources in available space. As solving the facility layout problem (FLP) might reduce material handling expenses, the most common objective in these approaches is to minimize the material handling costs. Our work introduces a new approach in obtaining the optimal positions of resources in a robot workstation where considerable contribution to the final layout design comes from the failure recovery data. The optimization criteria include material flow and transportation cost as the standard FLP objectives. In our approach we also consider the resource rate of failure and treatment quality as a part of the failure recovery. The optimization problems were solved with the state of the art optimization algorithm for the nonlinear optimization problems. The computational results of the study are discussed and analysed on the basis of a real industrial application. The commonly used objective function is compared to the proposed objective function extended with the failure recovery. As an important part of the failure recovery strategy, making the proper recovery decision in the workstation control design is also discussed.

Publisher

SAGE Publications

Subject

Instrumentation

Reference38 articles.

1. Robot location for minimum cycle time

2. Optimal Point-to-Point Trajectory Tracking of Redundant Manipulators using Generalized Pattern Search

3. A matrix approach to an FMS control design

4. Manufacturing Systems Control Design

5. Bokrantz J (2014) Production disturbance handling in Swedish industry – a survey study. Master’s Thesis, University of Gothenburg, Sweden.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3