Affiliation:
1. Merchant Marine College, Shanghai Maritime University, China
2. School of Navigation and Shipping, Shandong Jiaotong University, China
Abstract
This paper deals with the improvement for the tracking performance of underactuated surface vessels (USVs) under input saturation and actuator faults. The neural networks (NNs) are used to reconstruct the dynamic uncertainty of the ship, and an adaptive law is designed to compensate the adverse effects of external unknown disturbances and bias faults on the system. To improve the tracking performance of the system, a nonlinear link is added in the design process of the control scheme to adjust the system error feedback, and the finite-time control (FTC) technology is used to further improve the steady-state performance and transient performance of the system. In addition, to solve the problem of communication resource limitation, an event-triggered mechanism for switching thresholds is introduced, which reduces the update frequency of controller signals. Based on the above techniques, a trajectory tracking control scheme with a performance improvement mechanism is designed. A rigorous stability analysis is provided for the control scheme using Lyapunov stability theory. Finally, the effectiveness of the control scheme is verified by two sets of simulations.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献