Event-triggered trajectory tracking control of underactuated surface vessels with performance-improving mechanisms under input saturation and actuator faults

Author:

Meng Xiangfei1ORCID,Zhang Guichen1ORCID,Zhang Qiang2

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, China

2. School of Navigation and Shipping, Shandong Jiaotong University, China

Abstract

This paper deals with the improvement for the tracking performance of underactuated surface vessels (USVs) under input saturation and actuator faults. The neural networks (NNs) are used to reconstruct the dynamic uncertainty of the ship, and an adaptive law is designed to compensate the adverse effects of external unknown disturbances and bias faults on the system. To improve the tracking performance of the system, a nonlinear link is added in the design process of the control scheme to adjust the system error feedback, and the finite-time control (FTC) technology is used to further improve the steady-state performance and transient performance of the system. In addition, to solve the problem of communication resource limitation, an event-triggered mechanism for switching thresholds is introduced, which reduces the update frequency of controller signals. Based on the above techniques, a trajectory tracking control scheme with a performance improvement mechanism is designed. A rigorous stability analysis is provided for the control scheme using Lyapunov stability theory. Finally, the effectiveness of the control scheme is verified by two sets of simulations.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3