Simultaneous stable control of temperature field distribution uniformity and consistency for multi-temperature zone systems

Author:

Sang Xiaoyue1,Yuan Zhaohui1,Yu Xiaojun1ORCID,Xiao GaoXi2,Sadiq Muhammad Tariq1,Yang Pengfei1,Li Yu1

Affiliation:

1. School of Automation, Northwestern Polytechnical University, China

2. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Abstract

As a key factor characterizing the control accuracy of multi-temperature zone systems (MTZSs), the stable control of temperature field distribution uniformity and consistency is of critical importance for MTZSs, and it largely determines the product quality and production efficiency. Due to the complicated multiple input and output properties, as well as the various external variations in practice, however, it is extremely difficult to monitor the temperature field distribution in production process. To address the uniform and consistent temperature field distribution problem in MTZSs, a multi-variable dynamic matrix control (DMC)-based predictive control mechanism is proposed in this paper. Specifically, we first establish a finite element-based heat transfer model to analyse heat transfer within the multi-temperature zone, and then propose a multi-variable DMC-based decoupling design method to decompose the entire system into multiple subsystems with single-input single-output for temperature uniformity distribution control in MTZS. By utilizing the ANSYS tools to analyse the transient field temperatures, we obtain both time and space distribution characteristics of the transient temperature field with the proposed control method, and also compare such results with those obtained using the PID control method. Finally, we apply the proposed multi-variable DMC control mechanism onto a multi-temperature sintering furnace of a practical industrial product line for verification. Results show that, with the proposed control mechanism adopted, the difference between the highest and lowest temperature of any workpiece could be maintained within 5°C in the heat rising up period, which convincingly verifies the effectiveness of the proposed predictive control algorithm in different cases.

Funder

fundamental research funds for the central universities

northwestern polytechnical university

natural science foundation of shaanxi province

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3